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1. Introduction 

Neuroscientists have shown increasing interest in recent years in examining the integrated 

activity of the brain’s circuitry across large-scale networks (Sporns et al. 2004; Friston 2011; 

Alivisatos et al. 2012). This idea is based on the notion that functional connections are formed 

through synchronously firing assemblies (populations) of neurons (e.g., Engel et al. 2001; Varela 

et al. 2001), and experimentalists have identified several frequency bands, such as alpha and 

gamma, that relate changes in ongoing brain oscillations to behavioral performance (Klimesch  

et al. 2007; Jensen et al. 2012). These functional connections are dynamically changing, and 

within short time periods, connections between neural populations can be created, broken, and 

reestablished with other populations in response to different sensory stimuli and different 

processing demands (Battaglia et al. 2012; Buschman et al. 2012). Given the importance of these 

functional networks for communication across brain regions, electroencephalogram (EEG) 

experiments have increasingly focused on linking variability in functional networks to 

performance on behavioral tasks (Supp et al. 2005; Philiastides and Sajda 2006; Sun et al. 2009; 

Sakkalis 2011; Ioannides et al. 2012; Blinowska et al. 2013). 

Researchers have attempted to devise different approaches and methods for measuring functional 

networks accurately in EEG time series that are robust to noise. One class of functional measures 

known as effective connectivity refers to directed interactions between different brain regions or 

cell populations, and it is closely related to the concept of generalized synchronization (Schiff  

et al. 1996; Battaglia et al. 2012). There are a variety of signal analysis measures used for trying 

to detect effective connections between different neural populations, including Kullback-Leibler 

Divergence, Transfer Entropy, Partial Directed Coherence, Directed Transfer Function (DTF), 

and the direct DTF (for review, see Blinowska-Cieślak and Zygierewicz 2012; Seghouane and 

Amari 2012). In this analysis, we focus on DTF, which is related to the concept of Granger 

Causality and derived from multivariate autoregressive modeling (MVAR) of the time series. 

Granger-Geweke causality was originally introduced in economic time series analysis and used 

to study dependencies in bivariate signals (Granger 1969; Geweke 1982). If incorporating the 

components of the model of the first signal helps reduce the error of prediction in the second 

signal, the first signal is said to have caused the second signal. Thus these effective connectivity 

measures hold promise for capturing the temporal dynamics of functional neural networks 

(Blinowska et al. 2013). 

This study investigates how well DTF, an effective connectivity measure, captures the 

underlying network connectivity of a simulated, EEG-like signal generated from several 

thousand nonlinear conductance-based neuron models. We simulate 6 different networks, each 

with 4 interacting nodes that oscillate within 2 frequency bands of interest in experimental EEG 

studies, alpha and gamma (Nunez and Srinivasan 2006). Four of the networks are simple 
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feed-forward networks with one node driving 3 other nodes, and we manipulate whether the 

driving or receiving nodes oscillate at alpha or gamma frequencies. Two of the networks have a 

more complex connectivity pattern and include feedback connections and a ring structure.  

Our evaluation of these measures differs from the previous studies, which have used 

multichannel signals generated by MVAR models with defined dependencies in the coefficients 

(Baccalá and Sameshima 2001) or periodic signals with introduced delays between channels as a 

means of validating the measures (Blinowska et al. 2013). In other studies, bivariate connectivity 

measures were validated using neural mass models (David and Friston 2003; Wendling et al. 

2009). In the present study, we investigate the multichannel directional connectivity measure 

related to Granger causality applied to signals generated from 4-node networks. Since the 

simulated signals are created as a superposition of post-synaptic potentials of conductance-based 

models of neurons, our model better resembles an experimental EEG signal, which is created by 

the activity of firing neurons. 

From the results, we propose 2 guiding principles for the application of effective connectivity 

measures to experimental data to minimize spurious connections: computing the measure only 

when there is overlapping power in the spectrum and applying a conservative statistical 

threshold. Interpretation of these connectivity results can be further enhanced by incorporating 

known anatomical constraints. 

2. Methods 

2.1 Neural Networks Generating EEG-like Signals 

The simulated neural signals were generated using a modified version (Suffczynski et al. 2014) 

of the cortical network model originally developed to study epileptic phenomena (Kudela et al. 

1997; Anderson et al. 2012). The modifications included changes to simulate normal cortical 

activity without inducing seizures. This implementation integrates nonlinear conductance-based 

neuron model equations using Euler's method with a fixed step size of 0.01 ms. 

The model networks we examined all consist of 4 interacting nodes, each node consisting of a  

2-layer model of 400 excitatory neurons (pyramidal cells) and 100 inhibitory interneurons. A 

schematic of the arrangement as well as connectivity between layers is illustrated in Fig. 1. The 

current balance equation for the excitatory neurons has the form 

 𝐶
𝑑𝑉

𝑑𝑡
= −𝐼𝑠𝑦𝑛 − 𝐼𝑁𝑎 − 𝐼𝐶𝑎 − 𝐼𝐾 − 𝐼𝐾(𝐶𝑎) − 𝐼𝐴 − 𝐼𝐿 . (1) 

The form of the equations for the inhibitory interneurons is identical to the excitatory neurons 

except for the deletion of the calcium-dependent potassium current (Suffczynski et al. 2014). The 

detailed equations and symbols definitions are provided in Appendix A.
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Fig. 1   A simulated node consists of 400 

excitatory neurons and 100 inhibitory 

neurons. Connectivity between and within 

layers were randomly chosen. Example 

consists of one neuron in one layer 

connected to 3 neurons in another layer. 

For each node, connections among the 500 neurons were chosen randomly from a uniform 

distribution that ensures connections between all neurons were equally likely. Each connection 

was one of 4 possible types: excitatory to excitatory, excitatory to inhibitory, inhibitory to 

inhibitory, and inhibitory to excitatory. The connection strength and delay between the neurons 

was also randomly selected from a Gaussian distribution. In addition to these connections within 

each node, a total of 120 connections were randomly selected between each node pair to create 

the small networks used in the simulations. The model equations and connectivity parameters are 

provided in Appendix A. 

To generate different frequency oscillations in the simulated networks, we set different levels of 

stimulation to different nodes. The stimulation to each node was generated by a Poisson process 

of action potentials to the excitatory cells. By varying the rate parameter λ of the Poisson 

process, we can shift the frequency of the node's synchronous oscillation. Model parameters 

were chosen so that their power spectra peaked within 2 experimentally relevant frequency bands 

(Nunez and Srinivasan 2006): approximately 11 Hz to represent the alpha band and 

approximately 40 Hz to represent the gamma band. 
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The resulting oscillatory signal from each node was modeled as an EEG-like signal by summing 

and low-pass filtering the postsynaptic potentials of all excitatory synapses (Nunez and 

Srinivasan 2006; Suffczynski et al. 2014). For each node, 5 s of simulated signals are generated 

from summation of the postsynaptic potentials, and then they are filtered using a low-pass 

Butterworth filter of order 10 with cut-off at 100 Hz and decimated. The first and last 50 ms are 

discarded in the filtering process. This procedure resulted in simulated signal with a sampling 

frequency of 200 Hz. The resulting signal used in the effective connectivity analysis consisted of 

980 points. This length of the signal window also fulfills constraints for computing an MVAR 

model, ensuring that the number of estimated coefficients is less than 1/10th of the total number 

of points (Blinowska-Cieślak and Zygierewicz 2012). 

We used this procedure to generate 6 simulated networks that were either simple feed-forward 

networks or more complex feedback networks. Each network had 4 nodes. The 4 simple 

networks have one node projecting to 3 other nodes, and we vary whether the sending or 

receiving nodes oscillate within alpha or gamma frequency bands. The 2 complex networks have 

feedback connections and a ring structure among the nodes, and we again vary whether the 

sending and receiving nodes oscillate at alpha or gamma. 

2.2 Effective Connectivity Measure 

The time series from 6 simulated EEG-like networks were analyzed separately using an effective 

connectivity measure, DTF. Related to Granger-Geweke causality (Granger 1969; Geweke 

1982), this measure is based on MVAR modeling of time series and have been interpreted as a 

multivariate extension of the Granger concept (Baccalá and Sameshima 2001; Korzeniewska  

et al. 2003; Blinowska 2011; Blinowska-Cieślak and Zygierewicz 2012; Haufe et al. 2013). 

When the time series data are fit to an autoregressive model by minimizing the error terms, the 

model coefficients provide information about time lag influences between the signals and thus 

capture the connections producing those signals. We examine how well DTF captures the 

underlying connectivity among the nodes in our simulated EEG-like networks. 

The simulated signals for each network were separately modeled as an MVAR process; that is, 

we assume that the signals can be described as  

 𝑥⃗(𝑛) = ∑ 𝑨(𝑘)𝑝
𝑘=1 𝑥⃗(𝑛 − 𝑘) + 𝑤⃗⃗⃗(𝑛). (2) 

In this equation, p is the model order and w(n) is interpreted as a white noise process or the error 

in the prediction. We solve for the matrix model coefficients A(k) by noting that x(n – k) is 

uncorrelated to w(n). This allows us to write the equations as a block-Toeplitz matrix problem, 

which can be solved by the Levinson-Wiggins-Robinson (LWR) algorithm. More details on this 

derivation or the LWR algorithm can be found in Golub and Loan (2012). 

Connectivity is then calculated from the Fourier transform of the model coefficients. DTF values 

are obtained from the transfer matrix H(f), which is obtained by taking the inverse of the Fourier 

transform of the model coefficients A(f):
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 𝐷𝑇𝐹𝑖𝑗 =
|𝐻𝑖𝑗(𝑓)|

√∑ |𝐻𝑖𝑚(𝑓)|2𝑀
𝑚=1

, (3) 

where 

 𝐻𝑖𝑗(𝑓) = 𝐴𝑖𝑗
̄ (𝑓)−1, (4) 

and 

 𝑺(𝑓) = 𝐇(𝑓) 𝐕 𝐇∗(f), (5) 

where V is the residual covariance matrix of noise process w(n), S(f) is the spectral matrix of the 

signal, and H*(f) is a Hermitian transpose of matrix H(f). 

To accurately compute an MVAR model, we must determine the optimal model order. That is, 

we want to know how many time-lag terms to include in the MVAR model. Too few terms will 

result in a poor characterization of the original time series, and the associated power spectrum 

profile will be smooth and featureless. Too many terms results in over-fitting and can lead to 

spurious peaks in the power spectrum. The model order used in our analyses was determined by 

computing information-theoretic criteria and by comparing the parametric-computed power 

spectrum with the nonparametric-computed spectrum. 

Several information-theoretic criteria were computed since they are based on different 

assumptions about the signal and use different methods to penalize the model for additional 

parameters (see Appendix B), including the Akaike Information Criterion (AIC), Hannan-Quin 

Criterion (HQIC), Bayesian Information Criterion (BIC), and Forward Prediction Error (FPE) 

(Akaike 1974; Akaike 1981; Stoica and Selen 2004; Blinowska-Cieślak and Zygierewicz 2012). 

Additionally, the versions of the AIC, BIC, and HQIC corrected for small sample sizes were 

computed: AICc, BICc, and HGIc. These 7 information-theoretic criteria were computed 

separately for each of the 6 network topologies examined in this study, and the results are shown 

in Fig. 2. The model order is determined by searching for a local minimum in the plots across the 

criteria. Due to different assumptions about the signal, some of them may not show the 

minimum, so the model order is selected from those plots that do have a minimum. Here, the 

minimum of the BIC, FPE, and adjusted BICc is approximately the same for all network 

topologies, so we chose a model order of p = 10. Each time lag is one sample of the time series 

data, so the MVAR model for each simulation examined whether or not the current signal can be 

predicted from the previous 10 samples from all other nodes. The appropriateness of p = 10 for 

these data was also examined by comparing the power spectrum computed using the auto-

regressive model with one using Welch's method, and we obtained good agreement between the 

parametric 𝑺(𝑓)and nonparametric (Matlab's pwelch function) spectrum (Brovelli et al. 2004).
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Fig. 2  Values of 7 information-theoretic criteria plotted against the model order used. The legend is labeled 

according to the figures in which the power spectra and associated DTF results for the simulated 

networks are presented.  

In addition to computing the connectivity measure across all frequencies, we also integrated DTF 

only in the frequency ranges where the power spectrum shows peaks in our 2 bands of interest, 

alpha (10–12 Hz) and gamma (35–45 Hz). Theses ranges were determined by the full width at 

half-maximum value for the peak in power spectrum in the node where the peak in an alpha or 

gamma range was the highest. 

2.3 Computing Statistical Significance 

We determined statistical significance of the computed measures by shuffling the phase of the 

signals using Theiler’s method (Prichard and Theiler 1994) to generate surrogate data. The 

advantage of the Theiler method is that it can be easily applied to experimentally obtained time 

series, our targeted use of this method in future research. The method takes the Fourier transform 

X(f) of the time series x(t) and multiplies each point by a random phase. We symmetrize X(f) 

and take the inverse Fourier transform, which results in signals that have the same power 

spectrum as the original signal but with no correlation in the phases (Blinowska-Cieślak and 

Zygierewicz 2012). This process was repeated 500 times on the signal obtained from the 
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connected network simulation, and we generated a histogram of the results. From this, we 

obtained the distribution of the DTF values for each frequency. We computed the 95th percentile 

for the distribution at each frequency point resulting in a significance level of p < 0.05. 

3. Results 

We computed connectivity values for each of our 6 simulated networks using DTF. In each 

figure, section A shows the network topology, section B shows the power spectrum Sii(f) 

between 0 and 100 Hz as computed from the MVAR model, and section C shows the computed 

DTF. The rows in section C correspond to the sending nodes whereas the columns correspond to 

the receiving nodes. In each DTF plot, the black curves correspond to the significance level 

computed using Theiler's method as described in Section 2.3 of this report, and the red curves 

above the black lines correspond to frequency values with DTF values that were statistically 

significant based on Theiler’s method. 

3.1 Simple Networks 

All of these networks consisted of a central driving node that projects to 3 other receiving nodes. 

The parameters of the nodes were tuned so that the nodes would intrinsically oscillate either in 

the alpha band centered around 13 Hz or in the gamma range centered around 40 Hz. We 

examined the following 4 cases: 

• An alpha frequency node drives 3 alpha frequency nodes. 

• A gamma frequency node drives 3 gamma frequency nodes. 

• An alpha frequency node drives 3 gamma frequency nodes. 

• A gamma frequency node drives 3 alpha frequency nodes. 

In the first simulation, an alpha frequency node drives 3 alpha frequency nodes, as shown in 

Fig. 3A, where node 1 acts as the driver of the other 3 nodes with simulated synaptic connections 

projecting to nodes 2–4. The power spectrum in Fig. 3B shows that node 1 has the most power 

but all nodes peak near 13 Hz. Figure 3C is the computed DTF between 0 and 100 Hz. In the top 

row of Fig. 3C are the DTF components corresponding to connections 1  2, 1  3, and 1  4. 

Given the underlying topology of the network, one would expect that only connections 1  2, 3, 

4 would result in significant values of the DTF. However, we see that in 8 of the 9 other panels 

in this plot, the red DTF values are above the significance threshold shown in black. In 

particular, we see that the DTF is significant in components 4  1 and 4  3 across all 

frequencies except for a narrow band corresponding to the peak of the power spectrum (peaked 

near 14 Hz).
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Fig. 3   Alpha node 1 driving 3 alpha nodes. A: connectivity structure of a simulated 

network. B: power spectrum (0–100 Hz) computed from the MVAR model. C: 

computed DTF values plotted against frequency (0–100 Hz), where the rows 

correspond to the sending nodes and the columns correspond to the receiving nodes. 

In each DTF plot, the red curves above the black lines correspond to frequency 

values with DTF values statistically significant. 

The second simulation shown in Fig. 4 is identical to Fig. 3 except all nodes are now generating 

a signal in the gamma range. Similar to the first simulation, node 1 has much more power than 

the other 3 nodes, indicating a larger degree of synchrony. Examining the top row of Fig. 4C, we 

see that the components of the DTF corresponding to connections 1  2, 3, 4 are substantially 

above the level of significance for a wide range of frequencies, much more so than the same 
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components seen in Fig. 3C. This being said, there are still spurious results that indicate 

connections 3  1 and 2  3. If we examine the component of the DTF corresponding to the 

connection 1  3, we see that the measure is above significance over a broad range of 

frequencies. In fact, it is significant over a range of frequencies in which there is no power in the 

corresponding spectrum. It is impossible for there to be an influence from one region to another 

within this frequency band, and thus these results show that DTF detects spurious connections. 

 

 

Fig. 4   Gamma node 1 driving 3 gamma nodes. A: connectivity structure of a simulated network. 

B: power spectrum (0–100 Hz) computed from the MVAR model. C: computed DTF 

values plotted against frequency (0–100 Hz), where the rows correspond to the sending 

nodes and the columns correspond to the receiving nodes. In each DTF plot, the red 

curves above the black lines correspond to frequency values with DTF values statistically 

significant.
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Next we examined a situation where the driving node had little effect on the receiving nodes. 

Figure 5 is a simple network in which the driving node oscillates in the alpha frequency band and 

the receiving nodes oscillate in the gamma frequency band. Importantly, in the power spectrum 

plot shown in Fig. 5B, there is little overlap between the spectra of the sending and receiving 

nodes. Examining the 1  2, 3, 4 components of the DTF in Fig. 5C, the DTF values are not 

above significance in the frequency band of the driving node. The DTF is slightly above 

significance in the 1  2 and 1  3 components near 50 Hz. 

 

Fig. 5   Alpha node 1 driving 3 gamma nodes. A: connectivity structure of a simulated 

network. B: The power spectrum (0–100 Hz) computed from the MVAR model. C: 

computed DTF values plotted against frequency (0–100 Hz), where the rows 

correspond to the sending nodes and the columns correspond to the receiving 

nodes. In each DTF plot, the red curves above the black lines correspond to 

frequency values with DTF values statistically significant.
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Finally, we examine a case in which the driving node oscillates in the gamma frequency range 

and the receiving nodes are tuned to oscillate in the alpha band range. The power spectrum is 

shown in Fig. 6B, and in this case we see that node 1 induces a large frequency component near 

40 Hz in the receiving nodes. This increase in power is likely due to the entrainment of many 

neurons in the receiving node to the driving node's frequency. Examining the components of the 

DTF associated with these connections, we see that they are peaked near the 50-Hz region near 

the frequency of the driving oscillating node. Analogous to the case shown in Fig. 4 with nodes 

oscillating in the gamma frequency range, they are also all substantially above the significance 

level. There are 2 prominent, spurious components of the DTF indicating connections from 

nodes 4  2 and 4   3. In addition, we see that there are several components of the DTF that are 

significant at high frequencies even though there is no substantial power in the spectral plots. 
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Fig. 6   Gamma node 1 driving 3 alpha nodes. A: connectivity structure of a 

simulated network. B: power spectrum (0–100 Hz) computed from the 

MVAR model. C: computed DTF values plotted against frequency  

(0–100 Hz), where the rows correspond to the sending nodes and the 

columns correspond to the receiving nodes. In each DTF plot, the red curves 

above the black lines correspond to frequency values with DTF values 

statistically significant.
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3.2 Networks with Feedback Loops 

These 2 networks consisted of a central driving node that projects to 3 other receiving nodes with 

feedback connections and a ring structure. Just like the simple networks, the parameters of the 

nodes were tuned so that the nodes would intrinsically oscillate either in the high alpha band 

from 10 to 15 Hz or in the gamma range around 40 Hz. We examined the following 2 cases with 

a mismatch in frequency between the driving and receiving nodes: 

• A gamma frequency node drives 3 alpha frequency nodes with feedback and a ring 

connection. 

• An alpha frequency node drives 3 gamma frequency nodes with feedback and a ring 

connection. 

In the first simulation, a gamma frequency node 1 drives 3 alpha frequency nodes, as shown in 

Fig. 7, with feedback connections from 2 of the nodes (3 and 4) and an additional direct 

connection between nodes 2 and 4. The power spectrum in Fig. 7B shows that node 1 introduces 

substantial gamma frequency components in the power spectrum of its 3 receiving nodes. Thus 

the components of the DTF shown in Fig. 7C that correspond to connections from node 1 and 

projecting to nodes 2–4 are very prominent and substantially above the level of significance in 

the frequencies where power exists in the connected nodes. However, just as in Fig. 6, there are 

spurious connections detected as indicated by the significant DTF values at high frequencies 

(even 100 Hz) even though there is no substantial power in the power spectrum of any of the 

nodes at these frequencies. 

The DTF values in Fig. 7C do not robustly capture the feedback connections from 3 and 4 to 

node 1. No significance is found in the connection 3  1, and the connection 4  1 is barely 

detected by the connectivity measure and only at the edge of the higher frequencies showing 

power in the spectral plot. The final connection 2  4 shows significant DTF values at both 

frequency ranges where power is seen in the spectral plot. Finally, there is a spurious connection 

detected projecting from node 2 to node 1. In this case, the DTF has peaks in both the alpha and 

the gamma range. These peaks correspond to the peaks of the power spectrum of the sending and 

receiving nodes. Even though there is a true connection from node 4 to node 1, the corresponding 

component of the DTF shows that node 4 has little influence on node 1. It is possible that this is 

an example of the activity of node 2 propagating around the ring to node 1. However, this does 

not seem likely since the spurious peaks are more significant than the 4  1 component.
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Fig. 7   Gamma node 1 driving 3 alpha nodes with feedback loop. A: connectivity structure 

of a simulated network. B: power spectrum (0–100 Hz) computed from the MVAR 

model. C: computed DTF values plotted against frequency (0–100 Hz), where the 

rows correspond to the sending nodes and the columns correspond to the receiving 

nodes. In each DTF plot, the red curves above the black lines correspond to 

frequency values with DTF values statistically significant.



 15 

The second simulated network in Fig. 8 has the same connectivity pattern as Fig. 7 but the 

oscillating frequencies of the nodes are switched: In this case, node 1 oscillates in the alpha band 

and nodes 2–4 oscillate in the gamma band. Here we see similar results as those obtained in the 

simple networks. Namely, when node 1 oscillates in the alpha band, it does not entrain a 

substantial portion of neurons of the higher oscillating frequency nodes. Thus there is 

substantially less overlap in the power spectra of the sending and receiving nodes. The resulting 

DTF components are not significant (1  3 and 4) or only slightly above the significance level at 

the higher frequencies of oscillation with substantial power in node 2 (1  2). However, the 

feedback connections (1  3 and 4) and ring connection (2  4) from the nodes oscillating at the 

gamma frequency are captured relatively well, although frequencies outside the peaks of power 

in the spectral plot are shown as significant. Finally, we do have some spurious connections 

detected between (4 2) and the one seen in the first simulation in Fig. 7 between node 2 to  

node 1. This latter component of the DTF is actually more significant than what was observed in 

Fig. 7. 
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Fig. 8   Alpha node 1 driving 3 gamma nodes with feedback loop. A: connectivity 

structure of a simulated network. B: power spectrum (0–100 Hz) computed from 

the MVAR model. C: computed DTF values plotted against frequency  

(0–100 Hz), where the rows correspond to the sending nodes and the columns 

correspond to the receiving nodes. In each DTF plot, the red curves above the 

black lines correspond to frequency values with DTF values statistically 

significant. 
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3.3 Results Constrained by Spectral Power 

Across all 6 simulated networks, spurious connections are detected; however, a majority of these 

spurious connections are detected at frequencies outside of the broadly tuned alpha and gamma 

oscillations of the network nodes. We propose that these false positives may be mitigated by 

examining the connectivity values only in frequencies that have clear power peaks in the 

spectrum indicating presence of rhythmic activity. For these test networks, the maximum of the 

power spectrum corresponds to the frequency around which most of the cells in the population 

are synchronized. Thus, we assume that the largest synchronized cluster of cells within a node 

will have the most prominent effect on the receiving nodes and minimal influence from the 

smaller clusters oscillating at different frequencies. Here, we constrain the analysis for each of 

the 6 simulations to the frequency range for alpha and gamma where the power spectrum shows 

peaks. The range of frequencies for this analysis was chosen as full width at half-maximum of 

the powers density in the node with the highest values in each frequency band, and we examine 

how this constraint influences the reliability of the DTF measure. 

Figure 9 shows the DTF results of our 6 simulations for the peak in the alpha range (10–12 Hz) 

in light blue and the gamma range (35–45 Hz) in dark blue. Each panel represents the results for 

networks represented in previous figures (i.e., panel A is data from Fig. 3, panel B is Fig. 4, etc.). 
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Fig. 9   The computed DTF values plotted against frequency, where the rows correspond to the sending 

nodes and the columns correspond to the receiving nodes. In all of these panels, the frequency 

bands used for integration of significant DTF values were chosen as 10–12 Hz for alpha band 

(light blue) and 35–45 Hz for gamma band (dark blue). In all panels, node 1 is the driving 

node. The integrals in each panel are labeled corresponding to their associated figure: A =  

Fig. 3, B = Fig. 4, C = Fig. 5, D = Fig. 6, E = Fig. 7, and F = Fig. 8. 
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The simple networks are shown in panels A–D where one driving node projects to 3 other 

receiving nodes. The first 2 networks in panels A and B have driving and receiving nodes that 

oscillate at the same intrinsic frequency. As such, they have strongly overlapping spectra, and 

their connectivity pattern is captured relatively well by the DTF measure. While there are some 

spurious connections indicated as significant with Theiler method, the real connection from node 

1 to all others is clearly dominant in both integrated frequency ranges. However, the same 

network connectivity is shown in panels C and D but with a difference in intrinsic frequency of 

oscillations between driving and receiving nodes, and this configuration shows a different 

connectivity pattern. In panel C, the driving node oscillates at a frequency in the alpha range and 

the receiving nodes oscillate in the gamma range. This configuration is not detected well by 

DTF, with mildly significant DTF values for only one of the 3 actual connection (1  3) and a 

spurious connection (4  2). In panel D, the frequency bands flip from panel C with the driving 

node oscillating in the gamma range and receiving nodes in the alpha range. This configuration is 

detected substantially better than in C, matching the levels of significance seen with a pure 

gamma network in panel B. The real connection from node 1 to all others is clearly dominant in 

both the integrated frequency ranges and the much smaller significance values for the spurious 

connections from (4  1 and 2). 

The more complex networks with feedback connections and a ring structure are shown in panels 

E–F. These last 2 panels show that significant DTF values do not correctly represent the 

underlying connectivity. In panel E, the connectivity pattern showing node 1 as driving all others 

is reproduced with higher DTF values in alpha band despite node 1 dominant oscillations in 

gamma band. The feedback connections (3 and 4  1) and connection 2  4 are not detected, but 

the spurious connection (2  1) is captured with a barely significant DTF value in the alpha 

range. In panel F, when node 1 is oscillating in alpha range, the connectivity is misrepresented to 

the largest degree. Node 1 is correctly shown to receive input not only from nodes 3 and 4, but 

also incorrectly shown as receiving input from node 2. The connection 2  4 is correctly 

detected; however, the connections 1  2, 3, 4 are not detected at all. 

4. Discussion 

In this study, we simulate 6 networks using conductance-based model neurons that oscillate in 

frequency bands commonly investigated in experimental EEG studies, alpha and gamma (Nunez 

and Srinivasan 2006). Four of these simulated networks have a simple feed-forward structure 

with one node driving the other 3, and 2 have a more complex connectivity structure with 

additional feedback connections and a ring structure. Across all 6 simulated configurations, we 

manipulate whether the driving nodes oscillate at alpha or gamma. The time series from each 

simulated network is separately fit to an MVAR model, and an effective connectivity measure, 
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DTF, is computed from the model coefficients. Our analysis examined how well this effective 

connectivity measure captured the underlying functional connectivity of the network to assess its 

utility for recovering network connections in experimental EEG data in future research. 

Our results demonstrate that these functional connectivity measures can provide useful 

information about causal influences among network nodes, but they should be applied 

conservatively and interpreted carefully since they detect spurious connections even in simplified 

network configurations. We propose 2 guiding principles for application and interpretation of 

these measures on experimental EEG data: 1) analyze only those frequency bands with 

substantial overlap in the power spectra of the experimental recordings from investigated nodes 

and 2) apply a conservative statistical threshold. The measures performed best on the simple 

feed-forward networks, so they are likely most applicable for recovering less complicated 

network interactions and may perform better when knowledge about anatomical connections can 

be used to constrain their application or interpretation. 

Across these 6 simulations, the measures correctly identify connections when the driving node 

induces substantial activity in the same frequency as the receiving node, resulting in significant 

overlap of power spectra of both nodes. This effect was evidenced in both simple networks with 

all nodes oscillating in the same frequency band (alpha in Fig. 3 and gamma in Fig. 4) and when 

the driving node entrained the receiving nodes, which was more common for nodes oscillating in 

the gamma frequency (Figs. 6 and 8). Likewise, in Fig. 5, there was not much overlap in the 

alpha power spectrum and DTF was minimally significant and did not reliably capture the 

connectivity among the nodes. This overall difference between alpha and gamma oscillations 

may heavily depend on the dynamics of the networks in question. In our model, afferent 

connections from a network oscillating at a high frequency to a network oscillating at a lower 

frequency are detected at a much weaker coupling strength than in the opposite scenario. Thus, 

our model networks have a preference for higher frequency inputs, and this highlights a critical 

element of our results: the importance of power overlap in the spectrum. 

Our results show that entrainment between the nodes is not limited to their dominant oscillating 

frequency. The measure also detected connectivity in other frequency ranges since the driving 

node may synchronize over the total activity in the receiving node so the effective connectivity is 

visible across the whole frequency range. Consequently, we propose that the analysis should be 

constrained only to those frequencies with overlapping power in the spectrum. This enhanced the 

level of significance for the connectivity values, as demonstrated in Fig. 9. 

Of course limiting the analysis to overlapping power in the spectrum may miss some real 

connections. In an experimental data set there may be synchronous activity in a frequency band 

not corresponding to the maximum of the power spectrum (Brovelli et al. 2004). In this case, the 

ability of one population of cells to entrain another at a certain frequency is dependent both on 

anatomical connectivity as well as the biological properties of the cells involved in the 
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oscillation. In such cases, one would have to employ a variety of information to attempt to infer 

the effective connections, including any details about the true anatomical connectivity between 

cell populations and brain regions. 

Although implementing a constraint based on the power spectrum improves the performance of 

the connectivity measures, using a statistical method with significance level 0.05 still shows 

some spurious connections. In more complicated networks, when subnetworks at each node have 

different levels of synchrony or oscillate at different frequencies, the measures may function less 

reliably. This was evident in Figs. 7 and 8, which indicated an influence from node 2 to node 1 

where no connection exists. To maximize the correct number of detected connections, one must 

not only examine the measures in a narrow band around the peak of the power spectrum, but also 

set a relatively conservative significance level. Future work should examine if alternative 

statistical approaches or surrogate data approaches can improve identification of spurious 

connections. 

When interpreting connectivity analyses of experimental data, these connectivity measures are 

likely best used to confirm a hypothesis about effective connectivity based on some other 

anatomical and physiological data. These measures are not well suited to be used in isolation to 

try and determine unknown anatomical connections, but they can likely reveal dynamic casual 

interactions between brain regions when there is already some knowledge to formulate 

hypotheses about the underlying network connectivity. Previous research has shown that 

bivariate Granger Causality fails to correctly detect functional connections in a simple Pyloric 

central pattern generator (Kispersky et al. 2011). They computed the Granger Causality measure 

on a time series obtained from the stomato-gastric ganglion of the crab, which consists of 3 

oscillating subpopulations of neurons. They found that the computed Granger Causality inferred 

casual influences where no anatomical connections exist (Kispersky et al. 2011). Thus, our 

results are complementary and suggest that methods based on autoregressive modeling can 

produce spurious results when feedback connections are introduced into a network or when the 

network is more complicated than a simple network with a single source projecting to other 

nodes. 

Furthermore, these linear methods are prone to error simply from the fact that we are attempting 

to fit a time series generated from a nonlinear process to a linear model. Thus, this may be 

another reason that we detect spurious connections. In particular, DTF and similar methods 

reliant on computations in the frequency domain are unable to detect cross-frequency 

interactions, but in nonlinear systems like the brain, there might be interactions between systems 

not inducing the same frequency activity in the receiving node. Future research should examine 

nonlinear alternatives for recovering functional connectivity patterns.
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5. Conclusion 

Our simulations suggest the directed connectivity measures should be interpreted carefully and 

applied conservatively to experimental EEG datasets. We suggest 2 guiding principles for 

experimental analyses. First, DTF should only be analyzed in a frequency band centered at the 

frequency ranges with substantial overlap in the power spectra of the signals from different brain 

regions. Second, a conservative estimate of the significance should be used to avoid detecting 

spurious connections. 

Although these guiding principles will not completely eliminate spurious results, they may 

greatly reduce the number of false positives. These measures may be particularly helpful when 

testing hypotheses about connectivity among known anatomical structures, but they are unlikely 

to be informative when trying to infer underlying, unknown connectivity. Additional measures 

such as phase-synchronization measures or measures based on autoregressive models with time-

dependent coefficients may be further used as a check on the validity of the results obtained with 

measures similar to DTF. The inclusion of such measures may provide yet another way to bolster 

our criterion for validating whether or not 2 brain regions are interacting.
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Appendix A. Cortical Network Model
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The following are the values of the parameters used in the neuron model based on the model 

developed by Kudela et al.1,2 The individual channel currents are described by the following 

equations: 

𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚∞
3 𝑉(1 − 𝑊)(𝑉 − 𝑉𝑁𝑎), 

𝐼𝐶𝑎 = 𝑔𝐶𝑎𝑋2  
𝐾𝑐

𝐾𝑐+𝐶
(𝑉 − 𝑉𝐶𝑎), 

 𝐼𝐾 = 𝑔𝐾𝑊4(𝑉 − 𝑉𝐾), (1) 

𝐼𝐴 = 𝑔𝐴𝐴∞(𝑉)𝐵(𝑉 − 𝑉𝐾),  

and 

𝐼𝐿 = 𝑔𝐿(𝑉 − 𝑉𝐿). 

The recovery and activation variables for the previous equations are described by  

 
𝑑𝐹

𝑑𝑡
=

𝐹∞(𝑉)−𝐹

𝜏𝐹
, (2) 

where F represents W, X, A, m, and B. The steady state functions for these variables are given by 

an expression of the form 

 𝐹∞(𝑉) =
1

1+𝑒𝑥𝑝(−2𝑎𝐹(𝑉−𝑉1 2⁄
𝐹 ))

. (3) 

In all equations, V is the neural membrane potential. 

The synaptic current Isyn is modeled as  

 𝐼𝑠𝑦𝑛(𝑡) = ∑ 𝑤𝑗𝑔𝑗(𝑡 − 𝜏𝑗)
𝑁𝑠𝑦𝑛

𝑗=1
(𝑉𝑟𝑒𝑠𝑡 − 𝐸𝑠𝑦𝑛

𝑗
), (4) 

where 

 𝑔𝑗(𝑡) = 𝑔𝑠𝑦𝑛 ∑ (𝑒𝑥𝑝((𝑡𝑘 − 𝑡) 𝜏𝑑⁄ ) − 𝑒𝑥𝑝((𝑡𝑘 − 𝑡) 𝜏𝑜⁄ ))𝑁(𝑡)
𝑘=1 , (5) 

where k denotes summation over past action potentials on a given synapse and j denotes 

summation over all synaptic inputs of the neuron. 

The values of conductances and reversal potentials used in the model neuron are as in  

Kudela et al.2  

                                                 
1Kudela P, Franaszczuk PJ, Bergey GK. A simple computer model of excitable synaptically connected neurons. Biological 

Cybernetics. 1997;77(1):71–77. 
2Kudela P, Franaszczuk PJ, Bergey GK. Changing excitation and inhibition in simulated neural networks: effects on induced 

bursting behavior. Biological Cybernetics. 2003;88(4):276–285. doi:10.1007/s00422-002-0381-7. 
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In Table A-1 are listed the values that specify the number and types of connections between the 

excitatory and inhibitory neural subnetworks. Node connections are listed in Table A-2.  

Table A-1   Parameter values for normal alpha activity in each subnetwork 

Connection Type Domain Size 
Connections Strength  

STD Delay STD 

Excitatory to excitatory 4 × 4 30 5 3 100 50 

Excitatory to inhibitory 4 × 4 30 20 10 100 50 

Inhibitory to excitatory 4 × 4 30–100 50 100 50 

Inhibitory to inhibitory 4 × 4 5–100 75 100 50 

Note: STD is a standard deviation of Gaussian distribution of the parameters. 

Table A-2   Connections between nodes 

Connection Type Domain Size 
Connections Strength  

STD Delay STD 

Excitatory to excitatory 1 × 1 30 100 110 150 50 

Excitatory to inhibitory 1 × 1 10 100 110 150 50 

Inhibitory to excitatory 1 × 1 10–60 110 150 50 

Inhibitory to inhibitory 1 × 1 20–60 110 150 50 
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Appendix B. Multivariate Autoregressive Modeling (MVAR) Model
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The formulas for MVAR model order selection criteria used in this study are the following: 

 𝐴𝐼𝐶(𝑝) = 𝑙𝑜𝑔(𝑑𝑒𝑡(𝑉)) + 2
𝐾(𝑝)

𝑁
, (1) 

 𝐵𝐼𝐶(𝑝) = 𝑙𝑜𝑔(𝑑𝑒𝑡(𝑉)) +
𝑙𝑜𝑔(𝑁)𝐾(𝑝)

𝑁
, (2) 

 𝐻𝑄𝐼𝐶(𝑝) = 𝑙𝑜𝑔(𝑑𝑒𝑡(𝑉)) +
𝑙𝑜𝑔(𝑙𝑜𝑔(𝑁))𝐾(𝑝)

𝑁
,  

and 

 𝑙𝑜𝑔(𝐹𝑃𝐸(𝑝)) = 𝑙𝑜𝑔 (𝑑𝑒𝑡(𝑉(𝑝))) + 𝑙𝑜𝑔 (
1+𝐾(𝑝) 𝑁⁄

1−𝐾(𝑝) 𝑁⁄
), (3) 

 𝐴𝐼𝐶𝑐(𝑝) = 𝐴𝐼𝐶(𝑝) + 2
𝐾(𝑝)(𝐾(𝑝)+1)

𝑁−𝐾(𝑝)−1
, (4) 

 𝐵𝐼𝐶𝑐(𝑝) = 𝐵𝐼𝐶(𝑝) +
log(𝑁−𝐾(𝑝)−1)𝐾(𝑝)(𝐾(𝑝)+1)

(N−K(p)−1)
, (5) 

 𝐻𝑄𝐼𝐶𝑐(𝑝) = 𝐻𝑄𝐼𝐶𝑐(𝑝) +
log (𝑙𝑜𝑔(𝑁−𝐾(𝑝)−1))𝐾(𝑝)(𝐾(𝑝)+1)

(𝑁−𝐾(𝑝)−1)
. (6) 

In these equations, K(p) = pM2+M(M+1)/2 is a number of coefficients estimated for the model 

order p for M channels, and N is the number of sample points used in estimation. All of the 

model order selection criteria are derived under the assumption that the data in the time series 

x(n) is Gaussian distributed.1 

                                                 
Stoica P, Selen Y. Model-order selection: a review of information criterion rules. IEEE Signal Processing Magazine. 

2004;21(4):36–47. doi:10.1109/MSP.2004.1311138. 



 33 

 1 DEFENSE TECHNICAL 

 (PDF) INFORMATION CTR 

  DTIC OCA 

 

 2 DIRECTOR 

 (PDF) US ARMY RESEARCH LAB 

  RDRL CIO LL 

  IMAL HRA MAIL & RECORDS MGMT 

 

 1 GOVT PRINTG OFC 

  (PDF)  A MALHOTRA 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM D 

  T DAVIS 

  BLDG 5400  RM C242 

  REDSTONE ARSENAL AL 35898-7290 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRS EA    DR V J RICE 

  BLDG 4011  RM 217 

  1750 GREELEY RD 

  FORT SAM HOUSTON TX 78234-5002 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM DG    J RUBINSTEIN 

  BLDG 333 

  PICATINNY ARSENAL NJ 07806-5000 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) ARMC FIELD ELEMENT 

  RDRL HRM CH    C BURNS 

  THIRD AVE  BLDG  1467B  RM 336 

  FORT KNOX KY 40121 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) AWC FIELD ELEMENT 

  RDRL HRM DJ    D DURBIN 

  BLDG 4506 (DCD)  RM 107 

  FORT RUCKER AL 36362-5000  

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM CK    J REINHART 

  10125 KINGMAN RD  BLDG 317 

  FORT BELVOIR VA 22060-5828 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AY    M BARNES 

  2520 HEALY AVE  

  STE 1172  BLDG 51005 

  FORT HUACHUCA AZ 85613-7069

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AP    D UNGVARSKY 

  POPE HALL  BLDG 470  

  BCBL 806 HARRISON DR 

  FORT LEAVENWORTH KS 66027-2302 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AT    J CHEN 

  12423 RESEARCH PKWY 

  ORLANDO FL 32826-3276 

  

 1 ARMY RSCH LAB – HRED 

 (PDF) HUMAN SYSTEMS 

  INTEGRATION ENGR 

  TACOM FIELD ELEMENT 

  RDRL HRM CU    P MUNYA 

  6501 E 11 MILE RD   

  MS 284 BLDG 200A   

  WARREN MI 48397-5000 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) FIRES CTR OF EXCELLENCE  

  FIELD ELEMENT 

  RDRL HRM AF    C HERNANDEZ 

  3040 NW AUSTIN RD RM 221 

  FORT SILL OK 73503-9043 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM AV    W CULBERTSON 

  91012 STATION AVE   

  FORT HOOD TX 76544-5073 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) RDRL HRM DE    A MARES 

  1733 PLEASONTON RD  BOX 3 

  FORT BLISS TX 79916-6816 

 

 8 ARMY RSCH LABORATORY – HRED 

 (PDF) SIMULATION & TRAINING 

  TECHNOLOGY CENTER 

  RDRL HRT    COL G LAASE 

  RDRL HRT    I MARTINEZ 

  RDRL HRT T    R SOTTILARE 

  RDRL HRT B    N FINKELSTEIN 

  RDRL HRT G    A RODRIGUEZ 

  RDRL HRT I    J HART 

  RDRL HRT M    C METEVIER 

  RDRL HRT S    B PETTIT 

  12423 RESEARCH PARKWAY 

  ORLANDO FL 32826 

 

 1 ARMY RSCH LABORATORY – HRED 

 (PDF) HQ USASOC 

  RDRL HRM CN    R SPENCER 

  BLDG E2929 DESERT STORM DRIVE 

  FORT BRAGG NC 28310



 34 

 1 ARMY G1 

 (PDF) DAPE MR    B KNAPP 

  300 ARMY PENTAGON  RM 2C489 

  WASHINGTON DC 20310-0300 

 

 12 DIR USARL 

 (PDF) RDRL HR 

   L ALLENDER 

   P FRANASZCZUK 

  RDRL HRM 

   P SAVAGE-KNEPSHIELD 

  RDRL HRM AL 

   C PAULILLO 

  RDRL HRM B 

   J GRYNOVICKI 

  RDRL HRM C 

   L GARRETT 

  RDRL HRS 

   J LOCKETT 

  RDRL HRS B 

   M LAFIANDRA 

  RDRL HRS C 

   K MCDOWELL 

   J VETTEL 

  RDRL HRS D 

   A SCHARINE 

  RDRL HRS E 

   D HEADLEY 

 
 

 

 

 

 


